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FLOWS FOR DIFFERENTIABLE VECTOR FIELDS
ON CONJUGATE BANACH SPACES

RICHARD A. GRAFF

Introduction

In [6] the author showed that many of the manifolds of maps which are
used in global nonlinear analysis and previously had been regarded solely as
infinite-dimensional Banach manifolds do in fact possess the much richer
structure of objects which the author called Bw* manifolds. The author
introduced an approach to a theory of differential calculus for maps between
Bw* spaces as a tool for the development of differentiable Bw* manifold
theory, and isolated two classes of differentiable maps which the author
labeled C* and QU*. These classes of maps were shown to be closed under
composition, and the inverse function theorem was established for Q* maps.

The main result of this paper is Theorem 6.3, which will complete the
development of differential calculus for 2* maps by showing that ¥ vector
fields generate QU* flows. Since a Bw* space can also be regarded as a Banach
space, and since the QLF vector fields represent a subclass of the usual C k
vector fields under this identification, this existence theorem for flows gener-
ated by Q¥ vector fields is actually a strengthened version of the existence
theorem for flows generated by C* vector fields on Banach spaces. In fact,
the ordinary existence theorem will be used in the proof of this new version in
a manner reminiscent of the use of the ordinary inverse function in the proof
of the inverse function theorem for U* maps.

Since a detailed account of the relevant basic theory of Bw* spaces and
differential calculus map be found in [6], the reader will be assumed to be
acquainted with the material covered in that reference from the beginning of
Chapter 2 through the first half of Chapter 6. However, for the sake of
self-sufficiency, a brief review of essential information is included in §1.

1. Bw?* Spaces and Differential Calculus

Notation and terminology. Let X be a bw* space. Then X’ is a Banach space
as is X'”, and the natural linear injection of X into X” is onto. Furthermore,
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the topology induced on X” by its identification with X is identical to the
bounded weak-star topology induced on X” by its duality with X’. Con-
versely, every conjugate Banach space reequipped with the bounded weak-
star topology is a bw* space, so it will be convenient to avoid an abstract
definition in this paper and simply think of a dbw* space in this somewhat
more concrete fashion. The letter X will be used to denote a bw* space, and
the letter E will be used instead of X ” to denote the second dual of X. Note
that E can be thought of as a retopologized version of X. Since the topology
on E can be recovered by taking the second dual of X, bw* spaces can be
thought of as possessing two topologies. E will be assumed to possess a norm
in which the closed unit ball is compact in X. By(1) will denote the closed unit
ball with the topology which it inherits from E, and K will denote this ball
with the topology which it inherits from X. It is shown in [6, Chapter 2] that
X =lim,cy nK. L"(X, X) will denote the space of continuous r-linear maps
from X" to X with the topology of uniform convergence on bounded sets. If
X' is separable, i.e., if K is metrizable, then X will be called a Bw* space.

If X, and X, are bw* spaces, W open in X;, and f: W — X,, then f may
also be regarded as a map from an open subset of E; to E,. If f is C* between
E, and E,, it will be said to be strongly C*; if f is C* between X, and X,, it
will simply be said to be C* (or weakly C¥, if there is need to emphasize that
the weaker topology is the one involved). The same conventions hold for f
continuous (or weakly continuous) versus strongly continuous. If f is weakly
Ck, k > 1, then f is strongly C*™!, and D*f is locally Lipschitz between the
normed spaces.

Let X, X,, X; be bw* spaces, W open in X,, and g: W— L(X,, X;) a
continuous map. We will say g is Q-regulated if g satisfies the following
condition: for each compact subset C of W there exist continuous semi-
norms A on X; and v on X, such that, for each x,y € W and z € X,,
I(8(r) — 8N < Ay — x)l|z|| + ||y — x||»(2), where ||v|| denotes the
- norm of v in E; for each v € X,. Note that, for the case X, = X,, we may
replace both A and » in this definition by a single semi-norm (for instance,
A + »). We will call f: Wx, a Q! map if fis C! and Df is QU-regulated.

The concept of a U* map for & > 1 is defined inductively as follows: let
k > 2, and assume that the definition of a AU*! map has already been
introduced. Note that to each C' map: f: W — X, we may associate a map
Tf: W X X, — X, X X, which is defined by Tf(x, y) = ((x), Df(x)(y)). We
will call fa U* map if fis C' and Tf is A*~!. We will call f a U® map if fis
Q¥ for each k € N. If fis AU for k > 1, then it follows that f is both C* and
strongly C*. If X, is finite-dimensional, then f is U* < f is strongly C* and
D*fis a locally Lipschitz map between the associated Banach spaces.
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The coordinate transformations between charts belonging to the naturally-
arising atlases on many familiar manifolds of maps (e.g., spaces of maps of
Sobolev, Lipschitz, and Holder type) are U™, as are many of the maps
induced between such function spaces by smooth nonlinear partial differen-
tial operators.

2. Integral curves

Let W be open in X, and f: W — X a vector field which is both continuous
and strongly continuous. An integral curve a for f with initial condition
x € Wis a C! map from an interval (a, b) to X such that ¢ <0 <5,
a(a, b)) ¢ W, a(0) = x, and a’'(¥) = fla(t)) for each ¢ € (a, b), where the
derivative is of course taken in X. A strong integral curve for fis an integral
curve for f in the usual, Banach space sense. It is obvious that a strong
integral curve for f is also an integral curve.

2.1. Lemma. An integral curve for f is also a strong integral curve for f.

Proof. Let a: (a, b) - X be an integral curve for f, and let ¢ > 0. Then
a(la + &, b — €]) is compact in X, and so there exists ¢ >0 such that
[| Aa(e))|] < cforeacht € [a + &, b — ¢€]. It follows that, for each r, ¢t € [a +
g, b — g,

let) = as)ll =| 7 = als) ds| < [ = als)ll s < el = ol

Thus « is strongly continuous on (a, b). Since &’ = f ° a is strongly continu-
ous on (a, b), it is immediate that « is strongly C' on (a, b), and hence that «
is a strong integral curve for f. qg.e.d.

Since integral curves for f coincide with strong integral curves for f in the
case where f is both continuous and strongly continuous (which is the only
kind of vector field to be considered in this paper), the distinction between
these two definitions will be dropped, and the term “integral curve” will be
used to refer to a curve which satisfies either definition.

2.2.Lemma. Let W be open in S, and f: W — X a C" vector field. Then an
integral curve for f exists through each point of W, and maximal integral curves
are unique.

Proof. Since fis C, it is locally uniformly Lipschitz in E. Thus the result
is simply the standard existence and uniqueness theorem for integral curves
for a locally uniformly Lipschitz vector field in a Banach space.
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3. The Cauchy problem for continuous families
of bounded linear operators

Let Z be a topological space, a <b, V a sequentially complete locally
convex space, and g: Z X [a, b] X [a, b] > V a continuous map. Define
h: Z X [a, b] X [a, b] >V by h(z,t,r) = [, 8(z,s,r)ds. Then it is im-
mediate that A is continuous.

Now assume that Z is compact and that A: Z X [a, b] > L(X, X) is
continuous. Define a sequence {U,},so of maps from Z X [a, b] X [a, b] to
L(X, X) as follows: Uy(z, t, r) = Idy for each (z, ¢, r) € Z X|[a, b] X [a, b],
and U, (z, t, r) = [L A(z, $)U,_,(z, s, r) ds for each ¢, r. If U,_,(-,-,") is con-
tinuous then, since the topology on L(X, X) is the compact-open topology
and since X is a k-space, it follows that the map (z, ¢, r) — A(z, DU, _(2, t, )
is continuous. Thus, by the preceding paragraph, U,(:,-,) is continuous.

To see that 3°_, U,(-,",-) exists note that, since Z X [a, b] X [a, 8] is
compact, A(+,-) is bounded in L(X, X) and hence also in L(E, E). So there
exists ¢ > 0 such that ||4(-,-)|| < c. It follows by a standard argument that
cle =¥ _ c"la— Bl

l = " < <7l - l
for each n > 0, and hence that the partial sums {s, = Z7. U},5, are
uniformly Cauchy in L(E, E). Since the uniformity on L(X, X) is weaker
than the uniformity which L(X, X) inberits as a subspace of L(E, E), it
follows that the sequence {s,} is a uniformly Cauchy sequence of continuous
maps into L(X, X). Since L(X, X) is complete, we conclude that U(-,-,:) =
2% 0 Uy-,-,") exists and is continuous, and that U(z, ¢ r) =
[t A(z, s)U(z, s, r) ds for each z € Z, t,r € [a, b]. This implies that, for
each x € X, U(z,-, r)(x) is a solution to the equation du/dt = A(z, Hu(r) on
[a, b] with w(r) = x. Uniqueness of solutions to this equation also follows by
a standard argument: it is easy to verify that (3/9r)U(z, ¢, r) exists and equals
~U(z,t,r)A(z,r) for each z € Z and ¢, r € [a, b]. It is easily seen by a
similar argument that, if o(-) is any solution to the equation du/dt =
A(z, Hu(r) on [a, b], then (3/9r)U(z, s, NYo(r)) = U(z, s, r)v’(r) —
U(z, s, NA(z, no(r) = 0 for each s € [r,t], and hence that o(-) =
U(z,-, r)v(r) for each r € [a, b]. Letting v(s) = U(z, s, r)(x), the uniqueness
of solutions implies that U(z, ¢, s)U(z, s, r) = U(z, t, r) for each t,s5,r €
[a, b], and this composition is easily seen to be jointly continuous in all
variables. )

Incidentally, the standard argument shows that each U(z, ¢, r) is invertible,
and that U(z, t, ™' = U(z, r, ¢). For,

%(U(z, t,s)U(z, s, 1)) = Uz, t, s)(A(z,5) — A(z, s))U(z,5,8) =0

Uz, 8, )| <
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for each s € [r, 1], which implies that U(z, t, )U(z, r, t) = 1d,. Reversing the
roles of r and ¢, the result follows.

The above construction extends immediately to the case where Z is
assumed to be a k-space. The construction and uniqueness of U(z,-,-) are
apparent for each z € Z, so it is only necessary to check the continuity of
U(-,-,-). But since the product of a k-space with a compact space is again a
k-space, it is sufficient to check the continuity of U(-,-,-) on C X [a, b] X
[a, b] for each compact subset C of Z, which we have already done.

4. Differentiability of continuous flows

4.1. Definition. Let f: W — X be a vector field which is both continuous
and strongly continuous. A continuous map F(-,-) from an open subset V' of
R X E to E will be called a strong flow generated by f (i.e., a flow in the
conventional sense) if {0} X W C V and if each F(-,x) is an integral curve
for f. A strong flow F will be called a flow generated by f if V is open in
R X X and F(-,-) is weakly continuous from V to X.

4.2. Theorem. Let W be open in X, f: W — X a vector field which is C?,
and F(-,*) a flow generated by f. Then Fis C'.

Proof. 1t suffices to verify that F has continuous partial derivatives with
respect to the time and space variables. By definition of flow, D, F: V —
LR, E) = E exists and is given by D, F = f o F, which implies that D F is
continuous.

To see that D,F(-,-) exists and is continuous on ¥V, we proceed as follows:
define A(-,-): V= L(X, X) by A(z, s) = Df(F(s, z)) for each (s, z) € V, and
for each z € W let U(z,-,-) be the (unique) evolution system generated by
A(z,-). Let (¢, x) € V: choose a, b € R and an open neighborhood Z of x
such that a < 0 < b, t € (a, b), and [q, b] X Z C V. By the results of §3,
U(-,,") is continuous from Z X [a, b] X [a, b] to L(X, X), so U(-,-,0) is
continuous on a neighborhood of (¢, x) in V.

To see that D,F{(-,-) exists at (¢, x) and equals U(x, ¢, 0), define G: Z X
[a, b] — L(X, X) by G(», 5) = [ Df(rF(s,y) + (1 — r)F(s, x)) dr (by shrink-
ing Z if necessary, we can ensure that the line segment from F{(s, y) to F(s, x)
is in W for each y € Z and s € [a, b]). Let U'(+,-,*): Z X [a, b] X [a, b] >
L(X, X) be the parametrized evolution system generated by G(-,-). Again by
the results of §3, U’(-,-,) is continuous.

For each y € Z, define a,(-) on [a, b] by a,(-) = F(-,y) — F(-, x). Then,
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for each s € [a, b],

2 (U 19)a5)
U’(y7 Z s)a;,(s) - U,(y> Z S) G(y7 s)ay(s)
Uy, 1, s)[f(F(s, »)) = f(F(s, )

fi

—fol Df(rF(s, y) + (1 — r)F(s, x))(F(s, y) — F(s, x)) dr]
=0

by the Fundamental Theorem of Calculus. Integrating this equation from 0 to
t, we get F(t,y) — F(t, x) = U'(y, ¢, 0)(y — x). Thus

F(t,y) = F(t, x) = U(x, 1, 0)(y — x)
= U1 0) — Ulx 1, 0)(» — x)
= (U, ,0) = Ulx 1, 0))(y ~ x).

Let A be any continuous semi-norm on X, let p,: X — X, be the canonical
projection, and define g: Z — L(X, X,) by g(y)=p, o (U'(»y, 1 0) —
U’(x, t, 0)). Since X is a D-space, there exist an open neighborhood Y of x in
Z and a continuous semi-norm » on X such that g(Y) c L(X, X,) and
g: Y- L(X, X,) is continuous. Since g(x) = 0, for each ¢ > O there exists a
neighborhood Y, of x in Y such that || g(»)||,, < ¢ for every y € Y,, where
Il Il » is the norm on L, (X, X,). Thus, fory € Y,,

A(F(t,y) — F(t, x) — U(x, t, 0)(y — x))
=AMg(WV)(y = x))
< lgW)llar(y — x) < e(y — x),

which implies that D,F(-,-) exists at (¢, x) and equals U(x, ¢, 0). Thus we
have existence of D, F at each point of V, and continuity of D,F at each point
V by the second paragraph of this proof.

43. Corollary. Let W be open in X, f: W— X a U vector field, and
F(-,"): V = X a flow generated by f. Then F(-,-) is a AU map.

Proof. Since a Q! vector field is C', it follows from Theorem 4.2 that F is
C!. It merely remains for us to show that DF is QL -regulated.

As in the proof of the above theorem, it is convenient to examine the
partial derivatives D,F and D,F separately. We know that D|\F: V > X =
L(R, X) can be factored as D, F = f o F, which implies that D,Fis C'. By [6,
Example 5.18], it follows that D,F is Ql-regulated on ¥ and hence also on
any open subset of V.
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We will examine D,F on open subsets of ¥ which are of particularly nice
form. Assume that (£, x) € V; let a, 5 € R and Z open in X be as in the
proof of Theorem 4.1, and let A(-,-), and U(-,-,-) also be as in the proof of
Theorem 4.1. Define V| = (a, b) X Z. Note that, since A(z, s) = Df(F(s, z))
for each (s, z) C V, [6, Lemma 5.21] implies that A(-,-) is QU -regulated on V.
Let C be a compact subset of Z. Since A(-,-) and U(-,-, 0) are continuous on
[a, b] X Z, it follows that there is a constant & > 0 such that ||4(-,")|| <k
and ||U(-,-,0)|| <k on [a,b] X C. Let z, w € C, s €[a, b], y € X. Since
U(z, 0, 0) = U(w, 0, 0) = Id,, the Fundamental Theorem implies that

1UGz, 5, 0)(y) — Ulw, 5, ()] |
[ A DU 1 0)() = Alw, DU, 7, O0)) dr
< “ fo "(A(z, ) — A(w, D) U(z, r, O)(») dr“
+ [ A0 (UG, 7, 00) = Ulws 7, 0 @
< [U1 ) = G UG, 7, O dr

+k fo Uz 7, 0)(») — Uw, r, 0)(»)|l dr.

Applying Gronwall’s inequality, we conclude that

“ U(Z, S, 0)(y) - U(W, $, O)(y)”
<ekema | P14z, ) = A(w, D) U(z, 7, 0)(»)|| dr.

Since A(-,-) is AU -regulated on ¥, and [a, ] X C is a compact subset of V,
there exists a semi-norm A on X such that

(4(z, 1) — A(w, N)(V)I| < [z = wlA(v) + A(z = w)]loll

for each z, w € C, r € [a, b], and v € X. By [6, Lemma 5.7] there exists a
semi-norm » on X such that AMU(z, r, 0)(»)) < »(y) for every z € C, r €
[a, b], and y € X. Thus we obtain that

1U(z, 5, 0)(») — U(w, s, 0)(») :
< (b= @)e* 7|z — wiin(y) + KMz — W)y )
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Finally, foreachz, w € C, 5, s’ €E[a, b],andy € X,

|1 DLF(s', 2)(¥) — D2F (s, w)(»)||
= 1U(z, 5, 0)(») — Ulw, 5, 0)(»)|
< |U(z 5, 0)(») = Ulz, 5, )W)l + |U(z, 5, 0)(¥) = U(w, s, 0)(»)Il

= Mj;s Az, n)U(z, 1, 0)(») dri + | U(z, s, 0)(¥) — U(w, s, 0)(»)|l

SKAs" = sl -yl + (b — a)e*C |z = wiv(y) + kX(z = w)||y[).
The above inequality implies that D,F is Ql-regulated on V). Since DF =
D\F + D,F, and both D F and D,F are Q-regulated on V), it follows that
DF is Q. -regulated on V.
Finally, since for each point (¢, x) € V there exists a neighborhood ¥, of
(t, x) in ¥ such that the restriction of F to ¥, is @', from [6, Prop. 5.23] we
see that Fis ' on V.

5. Higher-order differentiability of continuous flows

We will next see that a continuous flow for a vector field is as highly
differentiable as is the vector field. The proof is an adaptation of a standard
induction argument. We will need to recall the notion of the tangent map
associated to a differentiable map, and we will need a partial converse to [6,
Proposition 4.14]. While we only need this converse for the case of vector
fields on bw* spaces, the proof yields a result of much greater generality, and
so the more general result appears in the statement of Theorem 5.2. For the
definitions of exponential and Schwartz spaces, refer to [6, Chapter 3]. If you
do not want to bother with the proof of Theorem 5.2 in this generality, simply
assume in the statement of Theorem 5.2 that Y is a bw* space.

5.1. Definition. Let Y and Z be locally convex spaces, ¥ open in Y, and
fi V> Z a C!' map. Then the map Tf: ¥V X Y —» Z X Z is defined by
Tf(x, y) = (f(x), DA(x)(¥)).

5.2. Theorem. Let Y be a complete exponential Schwartz space, Z a
complete locally convex space, V open in Y, f: V—Z a C! map, and k € N.
Then fis C*¥*' e Tf is C*.

Proof. Since this is a local theorem, it suffices to assume that V" is convex.
Note that, since an exponential space is compactly generated, L(Y, Z) is
complete (see [6, Proposition 3.23]). Also, since closed and bounded subsets
of a complete Schwartz space are compact, the topology on L(Y, Z) is the
compact-open topology. Finally, by [6, Proposition 4.14] we only need to
show that if 7fis C*, then fis C**!, ‘



FLOWS FOR DIFFERENTIABLE VECTOR FIELDS 583

We proceed by induction. Assume 7f is C'. Since the projection of Z X Z
onto the second factor is linear, the map

g VXYsZ
(%, ) = DA(x)(y)

is C!, so that the partial derivative with respect to the first coordinate,
D g: V X Y- L(Y, Z), exists and is continuous. Since the evaluation map
ev: I(Y, Z) X Y — Z is continuous on compact sets, and V X Y is a k-
space, it follows tha: :

hVXXYXY->Z
(x,)’, w)—>D1g(x,y)(W)

is continuous. Note that, since g(x, y; + y,) = g(x, ;) + g(x, y,) for each
Y1 V2 € Y, we have that h(x, y, + y,, w) = A(x, y1, w) + h(x, y,, w) for each
Y1, Y2 W € Y. Since linearity in the third factor is obvious, it follows that
h(x,-,") € LXY, Z) for each x € V. Further, since the topology on LY, Z)
is the compact-open topology, a standard result from the topology of function
spaces (see, for instance, [7, Theorem 7.5]) tells us that we may regard # as a
continuous map from ¥ to LYY, Z).

Now by the Fundamental Theorem applied to g and D, g we see that for
eachx,y € Vandw € Y,

Df(y)(w) = Df(x)(w) = [ "i(e + (1= Dx)(w,y — ) b,
which implies that
Dfiy) — D) = | Ch(y + (1 - Ox)(y — x) d.

By [6, Lemma 3.28] we obtain that Df is C', so that fis C2.

Now let r € N with r > 2, and assume that the theorem is true for £ <r.
Let f be a C! map such that 7Tf is C”. By the preceding part of the proof we
find that f is C? so that Df is C'. Now, (T(DH)(x, y)(w) =
(DAX)(W), Df(xXy, w)), and Dy(Tf)(x, yXw) = (DAx)(w), Df(x)(w, »))
which implies that 7(Df) = D,(TY). Since Tfis C", D\(Tf) is C"~}, i.e., T(DY)
is C"~!. Applying the theorem for (r — 1) to Df and T(Df), we conclude that
Df is C", so that f is C"*!. Finally, applying induction, we see that the
theorem is true for all k € N. q.e.d.

The following corollary is the same as [6, Lemma 6.3]. The proof of that
lemma, however, was not quite complete as it was presented in [6]. The proof
does becomes correct if we are allowed to assume that the above theorem is
valid. Thus the reader may refer to [6, p. 103] for the proof of the following.
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53. Corollary. Let X, and X, be bw* spaces, V be open in X\, f: V — X, be
a U map, and k € N. Then f is U o Tfis AUF.

Now we return to the notation of Definition'4.1 and Theorem 4.2.

5.4. Theorem. Let W be open in X, k € N, f: W — X be a continuous
vector field, and F: V — X be a flow generated by f.

@) If fis C*, then Fis C*.

(b) If f is U, then F is AUF. ‘

Proof. We proceed by induction. We know the theorem for k =1 by
Theorem 4.2 and Corollary 4.3. So let £ > 1 and assume the theorem proved
for the case (kK — 1).

Since F is C! in either case, we know that D,F: V - L(X, X) exists and is
continuous. Thus the map G: V X X > X X X defined by G(¢, x,y) =
(F(1, x), D,F(t, x)(y)) is well-defined and continuous. Now recall that we
showed in the proof of Theorem 4.2 that (d/dr)(D,F(¢, x)) exists and equals
Df(F(t, x))D,F(t, x) for each (¢, x) € V. Thus for each (¢, x,y) € V X X,
(d/dn(G(t, x, y)) exists and equals (f(F(¢, x)), DAF(t, x)) D, F(t, x)(y)). But

(f(F(t’ x))s Df(F(t’ x))DzF(t’ x)(y)) = Tf(F(t’ x)’ DZF(t’ x)(y))
= Tf(G(t’ x’y)),
ie., (d/d)(G(t, x, ) = TAG(, x, y)). Thus we have shown that G is a
continuous flow for Tf. Since Tf has one degree of differentiability less than f,
we may apply our inductive assumption to see that G is C*~ ! if (a) holds, and
that G is QU*~! if (b) holds. Finally, note that we have the following
expressionfor TF: V X R X X - X X X:

TF(t, x)(s, ) = (F(t, x), DF(t, x)(s, ¥))
= (F(t, x), D\F(t, x)(s) + D,F(t, x}(»))
= (F(2, x), sf(F(t, x)) + D,F(t, x)(»))
= G((¢, x,)) + 5(0, A(F(¢, x))).
Thus we conclude that TF is C*! if (a) holds, and that TF is U if (b)

holds. Hence applications of Theorem 5.2 and Corollary 5.3 complete the
proof.

6. The existence of continuous flows
Since a C ™ vector field is automatically strongly C*, the classical existence
theorem on solutions to differential equations in Banach spaces implies that a
weakly C* vector field must generate a strongly C* flow. However, we will
present an example to show that there are C* vector fields which do not
generate flows in the (more restrictive) weak sense.
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The example which follows was noticed independently by the author and J.
P. Penot. This vector field, which is defined on the Hilbert space /, of
square-summable sequences, has the property that the domain of the maximal
flow generated by the vector field is not weakly openin R X /,.

The other goal of this section is to show that a Q! vector field does
generate a (weakly) continuous flow.

6.1. Example. Define f: I, — I, by f((x1, Xp X3, = = = )) = (x}, x2, x2,- - - ).
Then f is obviously strongly C*. To see that f is (weakly) C', it suffices to
verify that Df is weakly continuous. But, since continuous linear maps are
C >, once we have shown that Df is continuous, it will follow automatically
that fis C*.

Let { e}, be the canonical orthonormal basis for /,, and regard each e, as
a linear functional on /, in the standard way. To see that Df is weakly
continuous, we employ the technique of [6, Example 5.6]; namely, we show
that ev o (Df X Id): I, X I, — I, is continuous. To see this, it suffices to show
that Df maps strongly bounded sets to strongly bounded sets (refer to the
just-cited example) and then to show that e; o ev o (Df X Id): [, X , >R is
continuous for each i € N. :

Since Df is strongly continuous and linear, we know that Df maps strongly
bounded sets to strongly bounded sets. To see that ¢; ° ev o (Df X Id) is
continuous, note that ¢, © e © (Df X Id) = ev ° (Df, X 1d), where f;, is the ith
coordinate function of f. But f;: /, — R can be factored as f, = g © ¢, where
g: R R, g(¢) = ¢% Thus each f, is C*®, which implies that Df, is continuous,
and hence that ev o (Df; X 1d) is continuous.

Let «; be the maximal integral curve for f with initial value e, Then
a(t) = ¢, /(1 — 1), and the domain of «; is (o0, 1). Thus if ¥ is the domain
of the maximal flow generated by f, then (1, ¢;) & ¥ for i € N. But, since
f(0) =0, R X {0} C ¥V, and since lim,_ (1, ¢) = (1, 0), it follows that V" is
not weakly openin R X /,. q.ed.

The above example may be modified to produce a C* vector field on /,
which has a maximal flow whose domain is all of R X /, but which maps
sufficiently large bounded subsets of R X /, to unbounded subsets of /,. Since
boundedness is equivalent to having compact closure in the weak topology, a
flow which does not preserve boundedness cannot be weakly continuous.
Thus a C* vector field may generate a maximal flow with a weakly open
domain such that the flow is not weakly continuous on that domain.

So we see that there are at least two reasons why a vector field might not
generate a flow in our strengthened sense: the domain of the maximal flow
might not be weakly open, and even if it is, the flow might map some weakly
compact sets to unbounded sets.
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The surprising thing is that these are essentially the only two things which
can prevent a strong flow from being a flow. This is shown by the following
lemma, which is due to S. Gautier and J. P. Penot [5].

6.2. Lemma. Let f: X — X be a continuous vector field which has unique
integral curves, let {x,}, 5 be a net in X with limit xy, and let a < 0 < b. For
each A € A, assume that the domain of the maximal integral curve for f with
initial value x, contains [a, b], and denote the restriction of this curve to [a, b]
by ay. Assume that {a,}rcn is a bounded subset of C°(a,b), E). Then
{ayYrea is a convergent net in C%(a, b, X). Furthermore, if we denote the
limit of this net by ay, then oy is an integral curve for f with initial value x,.

Proof. Choose n € N such that a,([a, b]) C By(n) for each n € N. Since
By(n) is compact in X, there exists m € N such that || {x)|| < m for every
x € By(n). Since oy () — ay(s) = [ f(a,(r)) dr for each ¢, s E[a, b), it fol-
lows that |lay(f) — ap(s)|| < m|t — s|. Thus {@,}yca is an equicontinuous
family of curves in C%[a, b], E), and since the identity map i: E— X is
uniformly continuous, it follows that {a, },<, i an equicontinuous family of
curves in C%(a, b], X). But since 4 = U, ., a([@, b]) C By(n), 4 has com-
pact closure in X, and hence by Ascoli’s Theorem (see [7, p. 233]), {a,} reca
has compact closure in C%([a, b], X). It follows that the net has at least one
limit point in C%(a, b], X).

Now let ay € C%(a, b], X) be any limit point of this net in C°(a, 8], X),
and let H be a subset of A such that lim ¢, o, = a;. Then for each
t, s € [a, b] the uniform convergence of {a,},y tO &, implies that

26(1) = ag(s) = lim (e (1) — ()

= lim, [ () dr = [ Sao(r)

i.e,, ap is an integral curve for f. Since ay(0) = lim, c 5 &,(0) = lim, o, &, (0) =
lim, o, x, = x, and there is only one integral curve for f with initial value x,,
it follows that [a, b] is contained in the domain of the maximal integral curve
for f with initial value x,, and that a is the restriction of this curve to [a, b].
We also see that the net has only one limit point. But in a compact space, a
net with only one limit point must be convergent. Thus lim,  , ) = a,,.

6.3. Theorem. Let k € N U {0}, and let f: W — X be a U vector field.
Then f generates a U flow.

Proof. 1t suffices to show that for each x € W there exists an open
neighborhood W, of x such that f|; generates a Q¥ flow. So let x € X.
Then it follows easily from [6, Lemma 4.18] that there exists a C* real-valued
function A: X — [0, 1] such that support(h) C W and such that there is a
neighborhood ¥, of x with h|,, = 1. By [6, Corollary 6.12], a C* map with
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finite-dimensional range is >, which implies that Af is A on X, and that
(f)|y, = flv,- Thus to show that f|,, generates a flow it suffices to show that
hf generates a Q¥ flow, and hence to prove this theorem for the case W = X,

So assume that f: X — X is U, and let F: V — E be the maximal strong
flow generated by f. To show that F is a Q% map it suffices by Theorem 5.4
to show that ¥V is open in R X X and that F: V — X is weakly continuous.

Recall that R X X is compactly generated. Thus to show that ¥ is open in
R X X it suffices to show that ¥V, = V" N (R X (rK)) is open in R X (nK) for
eachn € N.

Soletn € N, x € nK, and let a: (a, b)) - X be the maximal integral curve
for f with initial value x. Let 1 = sup{r > O: there exists a closed neighbor-
hood 4 of x in nK such that [0, r] X 4 C V, and F}j ;4 is continuous},
and let o = inf{r < 0: there exists a closed neighborhood 4 of x in nK such
that [r, 0] X 4 C V, and F|j, ¢, is continuous}. To show that ¥, is open in
R X (nK), it suffices to show that r = b and 0 = a. Note also that, once we
have shown this, we will also have shown that F is continuous on V,, since we
will have shown that for each ¢ € (a, b), there is a neighborhood of (¢, x) in
V,, on which F is defined and continuous. From this, the continuity of F on ¥V
is immediate.

To see that T = b we first show that + > 0. Since f is continuous and hence
bounded on weakly compact sets, there exists m; € N such that || f(z)|| < m
for each z € (n + K. Letting ¢ = 1/m,, it follows that, for each y € nK,
the integral curve e, for f with initial value y is defined on [0, ¢], and that
a,([0, c]) C (n + DK. By Lemma 6.2, it follows that F is continuous on
[0, ¢] X (nK), and hence that T > c.

Now assume for the moment that, to the contrary, 1 < b. Then a([0, r]) is
compact in X, so there exists m, € N with ||a(r)|| < m, for each ¢ € [0, 7].
Choose m; € N such that || Df(a(?))|| < m, for each ¢ € [0, 7). Choose m, €
N such that m, > m, + 2ne®* D7, Choose m, such that || (z)|| < m; for each
z € (my + DK. Finally, let e = 1/2m;. It follows as in the preceding para-
graph that for each y € m K the integral curve «, for f with initial value y is
defined on [0, 2¢] and that o, ([0, 2¢]) C (m, + DK

So choose a closed neighborhood C of x in nK such that [0, 7 — €] X C C
V, and that Flg ,_xc i continuous. Since [0, 7 — ¢] X C is compact,
F([0, 7 — €] X C)is compact. Hence the closed convex hull of F([0, 7 — ¢] X
C) in X, denoted by D, is also compact. Since f is Q!, there exists a
continuous semi-norm A on X such that, foreach y,z € Dandw € X,

I(DA(2) = DAY wIl < Az = »)lwll + Iz = yIIM(w).
By continuity, there exists a closed neighborhood W of x in C such that
A(F(t,y) — F(t,x)) < 1 forally € W and all ¢t €[0, v — ¢]. Note that W is
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automatically a closed neighborhood of x in ¥V,. Furthermore, for each
yeWandr [0, — ¢,

F(t,y) — F(t, x)
=(y—x)+ fo (A(F(s,»)) — f(F(s, x))) ds
=(y—x
+ f ! f ' DI(rF(s, y) + (1 = PF(s, x))(F(s, ) — F(s, x)) drds
00

=(y—x)+ fo " D(F(s, x))(F(s,y) — F(s, x)) ds

+ [ [ DAF(s, ) + (1= (s, %) = DRCF(s, %))
00
- (F(s,y) — F(s, x)) drds,
which implies that
IlF(t9y) - F(t’ X)H
<y = xl + ma [ 11 F(s. y) = F(s, x)] ds

+ [ [ 201 F(s,») = F(s, )INF(s,») = Fls, x) drds
= Iy = xll + ma [ F(s, ») — F(s, %)l ds

+ ['1F(s,») ~ Fls, x)INFGs, ») = Fls, %)) ds
<y = xli + Omy 1) [ (s, y) = Fs, )| ds.

By Gronwall’s inequality,

1F(t,») = F(t, x)|| < [|ly — x[|e®™+DF < 2nelmatdr,
and in particular, we have -

|F(t — &,y)|) < my + 2ne™*D7 < m,

for each y € W. Thus the integral curve for f with initial value F(r — &, y) is
defined on [0, 2¢] and is contained in (m, + 1)K, which means that [0, 7 + ¢]
X W cCV,and ||F(t,y)|| < my+ 1foreacht € [0, 7 + ¢}, y € W. An appli-
cation of Lemma 6.2 tells us that F is continuous on [0, 7 + ¢] X W, which
contradicts the maximality of 7. Thus T must equal » as was originally
asserted.

The proof that 6 = a is essentially identical to the proof that 7 = b, and so
is omitted.
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7. Manifolds of maps

We will assume throughout this section that M is a compact n-dimensional
manifold for some positive integer n. Let N be a QU* Bw* manifold (for the
definition and basic properties of these objects, see [6, Chapter 7]). Then TN,
the tangent bundle of N, is a QU® manifold, and it is possible to use a A®
partition of unity on N to construct a Q> spray on TN.Thus if O is a
section functor (for instance, the Lipschitz functor Lip,, the Hoélder functor
C**, or the Sobolev functor L? with k > n/p), the question naturally arises
whether 9 (M, N), the space of maps from M to N of class 91, has the
structure of a A® Bw* manifold in the obvious naturally-arising way. The
answer to this question is: almost, but not quite. We will spend the rest of this
section discussing this answer in some detail.

Let X be a Bw* space, E = X", and D" be the n-dimensional unit disc.
Then it is easy to see, using the results of [6, 2.1-2.21], that Lip, (D", E) and
C*¢(D", E) have a Bw* topology which is induced by the inclusion of these
spaces in CUD", X) (k € N U {0}, € € (0, 1)), and it follows from [4, §8.20]
that L{(D", E) (appropriately defined) is a Bw* space for p > 1 and k >
n/p. These Bw* spaces will be denoted by Lip, (D", X), C*(D", X), and
LE(D”, X) respectively.

7.1 Definition. Let (§, 7) be a pair such that £ is a AU* manifold, and
m: £ —> M a Q® map. Assume that, for each x € M, #7}(x) has the structure
of a Bw* space. The pair (£, 7) will be called a U* vector bundle over M if
for each x € M there exist a Bw* space X, an open neighborhood U of x in
M, and a U> fiber-preserving diffeomorphism ¢: 7 (U) - U X X, where
U X X is regarded as a bundle over M by projection onto the first factor,
such that p, ° ¢: 77)(y) > X is a linear isomorphism of Bw* spaces for each
y e U.

From the discussion preceding Definition 7.1 it is obvious that the Lip,-
sections of £ form a Bw* space as do the C**-sections and the Lf-sections.
The methods developed in §§1 and 6 of [6] for finite-dimensional bundles
over M now show (without modification) that Lip,, C** and L? are functors
from the category of Q> vector bundles over M and U™ fiber-preserving
maps between them to the category of Bw* spaces and C* maps. Unfor-
tunately, as the following example shows, the induced maps are not in general
of differentiability class 2™, though they are for & > 1 if the bundles are
finite-dimensional, as is shown in [6, Chapter 6].

7.2. Example. Let H,(S', R) be the Hilbert space of absolutely continuous
functions on §! with square-integrable derivatives, and let X be H,(S', R)
with the bounded-weak topology. Then the map f: R—>2R induces a U~

r—r
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map H,(f): X - X (in the terminology of the preceding paragraphs, H, is the
Sobolev functor L?). By the above remarks, the U® maps H,(f) in turn
induces a weakly C* map H,(H,(f)): H,(S', X) —» H(S"', X). However, the
map H,(H,(f)) is not U'. ,

Proof. Let T?> = S'x S, and define H, (T R) to be the Hilbert space
of square-integrable functions whose first distributional partial derivatives
and second mixed partial derivatives are square-integrable. For each s €
H(S', H(S', R)), we get a function ¢(s) € H,,(T? R) defined by
(@())(¢, 1) = (s(O)(r). It is well-known (see [3]) that ¢ is a linear isomorphism.
Under this isomorphism, H,(H,(f)) corresponds to the map
H,(f): H; (T% R) - H,(T? R) defined by H,,(f)s) = s°. So it suffices
to show that H, ,(f) isnot U' on H, (T? R).

To simplify the notation in what follows, denote H, ,(f) by g. Note that

{ PU e }
20V1+ 2+ m? + r'm® ) amez
is an orthonormal basis for H 1’,(Tz, R). Note also that Dg(0) = 0. Define two
sequences {x,},cx and {y,},cx, both of which converge weakly to zero, by
eint einr
X

n=__-—-’ yn=_'
20V 1 + n? 22V1 + »?

If g were of differentiability class AU' then, since {0} U {x,},cn is weakly
compact, it would follow that

Jlim || Dg(x,)(y,)ll = lim [|(Dg(x,) — Dg(0))y,|l = 0.

However, by direct computation, it follows that

e inteim-
Dg(x,)(y,) =

27%(1 + n?)’

which implies that || Dg(x,)(»,)|| = 1/=* for every n € N. Thus g cannot be
l. qed.

Since we have the inverse function theorem for U® maps, and we know
that QL™ vector fields generate QU*® flows, we can establish a generalization of
Palais’ vector bundle neighborhood theorem for finite-dimensional fiber
bundles [9, Theorem 12.10]; namely, if G is a QU® fiber bundle over M,
s € C%G), then there exist a Q™ vector bundle £ over M, an open neighbor-
hood V of the zero section in £, an open neighborhood W of s(M) in G, and a
U™ fiber-preserving diffeomorphism f: ¥ — W. In fact, Palais’ original proof
may be used in this more general setting.

With the generalized vector bundle neighborhood theorem available, it is
easy to redo the constructions of Chapters 1 and 6 of [6] to show that any
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section functor from the category of @™ vector bundles over M and AU~
fiber-preserving maps between them to the category of Bw* spaces and
continuous maps extends in exactly one way to a functor from the category of
Q> fiber bundles over M and AU~ fiber-preserving maps between them to
the category of C* Bw* manifolds and weakly C* maps. However, as
Example 7.2 shows, if G is a 9L™ fiber bundle over M, then we should not
expect the resulting Bw* manifold to be @* if the bundle is not finite-
dimensional.

8. Remarks

The classical proof of the Banach space theorem on the existence of a
differentiable flow for a differentiable vector field consists of the three
distinct parts: construction of a continuous (indeed, locally uniformly
Lipschitz) flow, a separate proof that any continuous flow must be continu-
ously differentiable, and some sort of induction to show that the flow
possesses as high a degree of differentiability as the vector field. The same
three distinct parts occur in the proof that a Q¥ vector field generates a U*
flow. Since the results on differentiability of the flow apply to more vector
fields on bw* spaces than just the ¥ vector fields, the author has chosen to
put the proof of differentiability in front of the proof of the existence of a
weakly continuous flow; but the order in which these parts are proved does
not matter, since they do not depend on each other.

A comparison of the proof of Theorem 4.2 with that of differentiability of
the flow in the Banach space case is in order. Of course, the standard proof of
differentiability in the Banach space case depends on the solution of the
appropriate time-dependent linear equation. However, proofs in most texts
are somewhat more complicated than the proof of Theorem 4.2 because they
fail to make full use of the evolution system generated by the linear equation
(specifically, of the partial derivative with respect to the second variable,
(8/0s)U(¢, 5))). Note that the analogues of the results of §3 are essential to
the technique of proof used in Theorem 4.2: continuously parametrized
time-dependent linear equations of the type under consideration must a priori
be known to generate evolution systems which depend continuously on the
parameter space.

This technique can be used to show differentiability of a continuous flow in
other situations than the classical case and the one considered in Theorem
4.2. For instance, let E be a Banach space, W be open in E, [a, b] C R, and
g W X |a, b - L(E, E) be a parameterized family of operators which is
continuous from W X [a, b] to L(E, E) with the strong operator topology.
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Then g(-,-) generates a unique parametrized evolution system U(-,-,-): W
X [a, b] X [a, b] » L(E, E), and it is easy to see that U(:,-,-) is continuous
from its domain to L(E, E) with the strong operator topology. Thus the proof
of Theorem 4.2 adapts to the present setting with no essential modification to
yield the following.

8.1. Theorem. Let E be a Banach space, W open in E, f: W — E a vector
field which has a Gateaux derivative at each point of W. Assume that Df: W —
L(E, E) is continuous from W to L(E, E) with the strong operator topology.
Then f generates a flow F with domain V open in R X E such that F has a
Gateaux derivative at each point of V and that DF: V- I{R X E, E) is
continuous from V to L(R X E, E) with the strong operator topology .

Proof. The assumption that Df is strongly continuous implies that f is
locally uniformly Lipschitz, and hence that f generates a continuous flow F.
The rest now follows from the paragraph preceding this theorem using the
technique of proof of 4.2. q.e.d.

This approach to the differentiability of a continuous flow can also be
applied to flows and semi-flows generated by nonlinear partial differential
operators, different cases of which were discovered independently and more
or less simultaneously by J. R. Dorroh and J. E. Marsden. In fact, the

- technique in the proof of Theorem 4.2 has its origin in the work of Marsden
on this application [8, pp. 279-284]. Marsden’s treatment applies to the case
where parametrized families of unbounded linear operators of the type under
consideration generate parametrized evolution systems which are known a
priori to depend continuously upon the parameter. A modified version of
Dorroh’s method (developed by the present author-see [2]) applies to a
situation where this continuous dependence is not assumed a priori but is
demonstrated during the course of the proof of differentiability. It turns out
that, in this case, it is only necessary to assume that families of unbounded
linear operators of appropriate type generate what Dorroh and the author
have called a weak evolution system (which exists under somewhat more
natural conditions from the point of view of applications than an evolution
system).

The author has developed linear evolution systems on bw* spaces in §3 of
this paper. The reader who is unfamiliar with the concept of a linear
evolution system and wishes to compare §3 with a treatment in a more
conventional setting may wish to consult [1] for a particularly readable
treatment of evolution systems generated by families of bounded linear
operators on a Banach space, or [2] for a new and thorough treatment of
evolution systems generated by families of unbounded linear operators in a
Banach space.
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Incidentally, note that the results of this paper apply to two opposing
extreme cases: on the one hand, we have our main result, Theorem 6.3, which
represents a definite strengthening of the corresponding result in the category
of Banach spaces and differentiable maps; and on the other hand, we have
Theorems 4.2 and 8.1, which tell us that a flow in a Banach space possesses
some sort of continuous differentiability in certain instances where the
generating vector fields possesses a degree of differentiability which is less
than C! in the classical sense of Fréchet differentiability in Banach spaces.
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